KEITH SIMMONS

THE DIAGONAL ARGUMENT AND THE LIAR

I. INTRODUCTION

There are arguments found in various areas of mathematical logic
that are taken to form a family: the family of diagonal arguments.
Much of recursion theory may be described as a theory of diagonaliza-
tion; diagonal arguments establish basic results of set theory; and they
play a central role in the proofs of the limitative theorems of Godel
and Tarski. Diagonal arguments also give rise to set-theoretical and
semantical paradoxes. What do these arguments have in common —
what makes an argument a diagonal argument? And why do some
diagonal arguments lead to theorems, while others lead to paradox?

In this paper, I attempt to answer these questions. Cantor’s first
uses of the diagonal argument are presented in Section II. In Section I,
I answer the first question by providing a general analysis of the
diagonal argument. This analysis is then brought to bear on the
second question. In Section I'V, [ give an account of the difference
between good diagonal arguments (those leading to theorems) and bad
diagonal arguments (those leading to paradox).

The main philosophical interest of the diagonal argument, I believe,
lies in its relation to the Liar paradox. The familiar Liar is generated
by our ordinary semantical concepts of truth and falsity. Its proper
setting 1s natural language, in which our ordinary semantic terms
appear. As Tarski has made clear, this means that the Liar is inextri-
cably linked with another vexed semantical problem, that of univer-
sality. Perhaps the central question here is this: Are natural languages
universal? Roughly speaking, a language is universal in Tarski’s sense
if it can say everything there is to be said. If natural languages are
universal in this sense, then they can say everying there is to be said
about their own semantics. But then it would seem that natural
languages fall foul of the Liar.
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In my view, diagonal arguments are at the heart of the issues raised
by the Liar and the problem of universality. In section V, the analysis
of good and bad diagonal arguments is applied to a variety of leading
solutions to the Liar. I argue that good diagonal arguments show the
inadequacy of several current proposals. These theories, though quite
different in nature, are shown to fail for the same reason: they fail to
capture our ordinary semantical concepts. | go on to argue that one
version of the claim that natural languages are npt universal; but
expressively incomplete, gives rise to a bad diagonal argument, and so
leads us back to the Liar. The discussion of Section V provides
criteria of adequacy for any solution to the Liar.

II. CANTOR’S USE OF THE DIAGONAL ARGUMENT

In 1891, Cantor presented a striking argument which has come to be
known as Cantor’s diagonal argument.' One of Cantor’s purposes
was to replace his earlier, controversial proof that the reals are non-
denumerable. But there was also another purpose: to extend this
result to a general theorem, that any set can be replaced by another
of greater power. To these ends, Cantor gave two proofs. The first
established the existence of a nondenumerable set which may be asso-
ciated with the set of reals; the second provided an example of the
replacement of a set by one of greater power. Each proof used the
method of diagonalization.

The first proof runs as follows. Consider the two elements m and w.
Let M be the set whose elements E are sequences <{x,, Xs, . . ., X,,
... >, where each of x,, x,, ..., x,, . . . s either m or w. Cantor
asserted that M is nondenumerable, and proceeded to establish this
by a proof of the following theorem:

If £, Ey, ..., E.,...Isany simply infinite? sequence of elements of the set M, then
there is always an element E, of M which corresponds to no E,

Cantor arranged a denumerable list of elements of M in an array:
El = <a1;11 al,2s CEEIE al,ra LR >s

EZ = <a2.ls gy o oo yys oo - >a
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E

T <a;1,l: ap.2a AR ] au.\-s L >

Each a,, is either m or w. Cantor now defined a sequence b, b,
by, ..., where each of b,, b,, bs, . . . is either m or w, and, further, if
a,, = mthenb, = w,and if q,, = wthen b, = m. Let E;, =
{b,, by, by, . .. >. Then no E, corresponds to E,. For suppose that
E, = E,, for some v; then the vth coordinate of E, is identical with
the vth coordinate of E,, which contradicts the definition of the
sequence b,, b,, by, . . . . Notice that this proof may be easily con-
verted into a direct proof of the nondenumerability of the real
numbers. If we let m = 0 and w = 1, then each E, is the binary
expansion of a real number.

Of his first proof, Cantor wrote

This proof seems remarkable not only because of its great simplicity, but also because
the principle which it follows can be extended directly to the general theorem, that the
powers of well-defined sets have no maximum, or, what is the same, that in place of
any given set L another set M can be placed which is of greater power than L.*
However, Cantor went on to prove not the general theorem, but an
instance of it. Cantor took L to be the linear continuum, M to be the
set of single-valued functions f(x) which yield only the values 0 or 1 for
any vatue of x e [0, 1], and proved that M is of greater power than L.
This second proof proceeded in two stages. First, Cantor estab-
lished that M is at least as large as L, by showing that there is a
subset of M which can be put into 1-1 correspondence with L. Con-
sider the following subset of M the set of those functions on [0, 1]
which have value 0 except for one argument x,. There are as many of
these functions as there are reals on [0, 1]. Second, Cantor proved
that there is no 1-1 correspondence between M and L. Suppose,
towards a contradiction, that there is a 1-1 correspondence ¢ between
M and L: for each z in L, there is a function f(x) in M such that
¢(x, z) = f(x), and for each f(x) in M, there is exactly one z in L
~ such that ¢(x, z) = f(x). Now Cantor defined the function g(x) in M,
where for any x, g(x) is either 0 or 1, and if ¢(x, x) = 0 or 1, then
g(x) = 1 or 0 respectively. Since g(x) is a single-valued function
which yields only the values 0 or 1 for any value of x in [0, 1], g(x) is
an element of M. Given the 1-1 correspondence ¢, there is a z, in L
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such that ¢(x, z,) = g(x). Putting x = z,, we obtain
®(z9, z9) = g(z,); but this contradicts the definition of the function
g(x). This completes the second proof.°

ITT. GENERAL ANALYSIS OF THE DIAGONAL ARGUMENT

As we have seen, Cantor’s first diagonal argument involves an array,
which we may illustrate as follows:

i 2 3
E, m w m
E, W m m
E; m i w

We can think of this array as composed of two collections — the
‘side’ ({£,, E,, Ey, ... })and the ‘top’ ({1,2,3,...}) — and the
‘values’ m and w, There is a unique value for any pair of elements
taken from the side and the top. Any diagonal argument involves
such an array. ’

DerNITION. Let R be a 3-place relation, and D, (the side) and D, (the
top) be sets.” Then, R is an array on D, and D, «, VxVy(xe D, &
y e Dy — AlzRxyz).
In Cantor’s first proof, the array R is given by
m, if element x has m in its yth place
R(x, y) =

w, if element x has w in its yth place.

Now consider an array with finite top and side, for example:

D,
0 1 0 1
D, 1 1 0 1
0 0 0 |
1 t i 0
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Think of the values (here, 0 and 1) as occupying cells, given by coor-
~dinates {x, y, where x € D, and y € D,. We will take diagonals to be
composed of cells. The leading diagonal, from top left to bottom
right, corresponds to our intuitive notion of a diagonal:

However, other configurations of cells serve just as well in diagonal
arguments. What is essential is a 1-1 correlation between D, and D,,
and this is equally well supplied by another ‘diagonal’, say:

-

In Cantor’s presentation of his first proof, for example, the diagonal
considered is the leading diagonal, the cells of which are given by
CEy, 1), (Ey, 2, {(E;, 3), . ... But the leading diagonal is just one
diagonal among many. An alternative is suggested by the coordinates
CE\, 25, {E;, 13, (E;, 4>, {E,, 3> . ... The notion of the leading
diagonal does not apply unless top and side are ordered, and there is
a correlation corresponding to this ordering. But in diagonal argu-
ments, ordering plays no essential role: it is the correlation between
elements of the top and side that is crucial.®

S0 we are naturally led to the following definition of a diagonal.

DEFINITION. Fis a diagonal on D, and D, <4 F is a 1-1 function from
D, into D,”°

The notion of a diagonal has to do only with position. As yet there is
no link between the cells which constitute the diagonal, and the value
associated with each cell.

DEFINITION. Let R be an array on D, and D,, and let F be a diagonal
on D, and D,. Then G is the value of the diagonal F in
R 4 VXVyVz(Gxyz «» Fxy & Rxyz).
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In Cantor’s first proof, the value in each cell of the leading diagonal
is changed. The procedure is illustrated by the replacement of

I 2 3 R by 1 2 3
L, m E, w
E, m E, W
E; w £, ‘ b

We introduce the notion of a countervalue in order to generalize this
procedure,

DEFINITION. Let R be an array, and F a diagonal, on D, and D,.
H 1s a countervalue of F in R &y

)] VxVy(dzHxyz < Fxy)

(it) VxVyvzVz' (Hxyz & Hxyz — z = 2')
(iii) VxVyVz (Hxyz — z € Range R)

(iv) VxVyVz (Hxyz — "1 Rxyz).

The countervalue corresponding to our illustration of Cantor’s first
proof may be given as this set of ordered triples:

{<El= la W>, <E2: 25 W>: <E3a 3: m> LR }

Note that if R yields n. + 1 values (# > 1), there are #eddomr)
countervalues. Below, we will make use of this feature of our analysis,
that, if R yields more than 2 values, there is more than one counter-
value. Previous attempts in the literature to provide a general charac-
terization of the diagonal argument have pointed to this theorem of
quantificational logic:

(Ru)  —33x¥y(J(x, y) < I (y, »)).

The idea is that diagonal theorems are interpretations of (Ru), or

some variant of (Ru).”® Call this the ‘Russell analysis’. On the Russell
analysis, the analogue of our countervalue is the set of those elements
of the domain of discourse which do not bear J to themselves. There
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is just one such set. The Russell analysis is captured by a special case
of our general analysis, the case where R yields two values, and there
is just one countervalue.

In final preparation for the diagonal theorem, we define the notion
of a value or a countervalue occurring as a row. A value or counter-
value occurs as a row if its associated values form a row of the array.

DEFINITION. Let R be an array on D, and D,, and let X be a value
or countervalue of a diagonal F of R. Then, K occurs as a row of
R oy dd e D\VxVyVz(Hxyz — Rdyz).

THE DIAGONAL THEOREM. Let R be an array on D, and D, and
let F be a diagonal on D, and D,. Let H be a countervalue of F. Then,
H does not occur as a row of R.

Proof. "

(1) Show 713w e D \VxVyVz(Hxyz —» Rwyz)

(2) 3Jwe DVxVyVYz(Hxyz — Rwyz) Assumption (H occurs
: &s a row)
(3) VxVyVz(Hxyz - Rdyz) ' 2, ET
(4) VxVy(@zHxyz < Fxy) Premise (H is a countervalue)
(5) Vy(dzHdyz « Fdy) 4, UJ
(6) Vxe D,dye D,Fxy Premise (F is a diagonal)
(7) 3y e D,Fdy 6, Ul
(8) Fde 7, EI
(%) Fde — 3zHdez 5, QL, SL
(10) 3zHdez 8,9 SL
(11) Hdef 10, ET
(12) Hdef — Rdef 3, U
(13) Rdef 11, 12 SL
(14) VxVyVz{Hxyz -» =1 Rxypz) Premise (H is a countervalue)
(15) Hdef > 1 Rdef 14, UT

(16) — Rdef 11, 15 SL

We may distinguish two kinds of diagonal argument: direct and
indirect. In an indirect diagonal argument, the diagonal theorem
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is embedded in a proof by reductio; in a direct diagonal argument, it
1s not. '

A direct diagonal argument specifies in set-theoretical terms a side, a
top, an array, and a diagonal, each of which exists. The diagonal
result is an interpretation of our diagonal theorem. Cantor’s first
proof is a direct diagonal argument. The element J appearing in the
proof corresponds to Cantor’s £,. By the diagonal theorem, d does
not belong to Dy: in Cantor’s words, “there is always an element E,
of M which corresponds to no E,”.

An indirect diagonal argument also provides a set-theoretical specifi-
cation of a side, a top, an array and a diagonal, but assumes the
existence of at least one of these rowards a contradiction. Here, the
diagonal argument generates a contradiction, via a proof of the
diagonal theorem, for the appropriate interpretation. Cantor’s second
proof 1s an indirect diagonal argument. Cantor assumed the existence
of an array on a side (the set M) and a top (the set L), where the
values of the array are 0 and 1. Cantor further assumed, towards a
contradiction, the existence of a diagonal, the 1-1 correspondence ¢.
Cantor went on to define the function g(x) in terms of ¢. But here
the diagonal theorem tells us that there is no function in A/ which
satisfies the definition of the function g(x), and we have a contradiction."

IV. GOOD AND BAD DIAGONAL ARGUMENTS

Russell remarks that Cantor’s diagonal argument

appears to contain no dubitable assumption, Yet there are certain cases in which the
conclusion seems plainly false."

Russell reviews a number of such cases, including his own paradox,
and concludes:

- - . the application of Cantor’s argument to the doubtful cases yields contradictions,
though I have been unable to find any point in which the argument appears faulty.™

As well as those considered by Russell, there are other ‘doubtful
cases’, including Richard’s paradox, the heterological paradox, and
the cycling and grounding paradoxes in set theory and in semantics,
In each of these cases, the diagonal argument leads to a contradiction.
And yet in other cases the diagonal argument leads to a theorem.
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Why is it that some diagonal arguments are ‘good’, while others are
‘bad’?

Let us begin by considering the bad diagonal argument associated
with Richard’s presentation of his paradox.” Let the side D, be the
set of real numbers definable by an expression of English, and let the
top D, be the set of natural numbers. Let R(x, y) = p, where p is the
digit in the yth decimal place of x. Let F be a 1-1 function from D,
onto D,. A countervalue H of F is given by

p -+ 1, if pis the digit in the yth place of the

decimal expansion of x, and p # 8 or 9
Hix.y) = o
1, if p is the digit in the yth place of the

decimal expansion of x, and p = 8 or 9.

The diagonal argument leads to the conclusion that there is no
number, definable by an English expression, which has in its yth
decimal place either the number p + 1 or the number 1, according to
whether the number correlated with y has in its yth decimal place the
number p, where p # 8 or 9, or the number 8 or 9. But if we now
append the italicized expression in the previous sentence to the -
expression “‘The number which has 0 for its integral part and”, we
obtain an English expression defining a number which, we just con-
cluded, was not definable by an English expression.

Richard offers a solution to his paradox which does not work.'®
But a leading idea of Richard’s solution is suggestive. According to
Richard, the contradiction is only apparent, because the set that we
have labelled D, is not ‘totally defined”.”” And it is plausible that the
problem lies with D,. Suppose that we had started out by assuming,
towards a contradiction, that there is a set D, of reals definable by
English expressions. We could then have proceeded with the diagonal
argument of the previous paragraph, and obtained a contradiction.
Now, instead of a paradox, we have a reductio proof that there is no
such set D;. We obtain an indirect diagonal argument. According to
this response to Richard’s paradox, there is nothing wrong with the
reasoning of the bad diagonal argument — rather, what is at fault is
the assumption that all of the top, side, array and diagonal exist. This
bad diagonal argument, unlike direct diagonal arguments, assumes
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the existence of a set that does not exist. And unlike indirect diagonal
arguments, this assumption is not made towards a contradiction.'®

There are good direct analogues of this bad diagonal argument. If
we let D be any denumerable set of reals, and keep the rest of the
interpretation fixed, we obtain a direct diagonal argument which con-
stitutes a proof of the non-denumerability of the reals, quite analogous
to Cantor’s first proof. _

A similar diagnosis can be made for other bad diagonal arguments.
Consider Russell’s paradox. Suppose we assume that there is a set M
of exactly those sets which are not members of themselves. The side
and the top are each the proper class of all sets, where the side and
top are taken to include the set M. The array R is given by

I, ifyex
R(x, p) = ,
0, ifyéx
The diagonal F is identity. The countervalue H of Fis given by
1, ifxé¢x
H(x, x) =
: 0, ifxex

By the diagonal theorem, there is no set of exactly those sets which
do not belong to themselves, contradicting our assumption. It is the
assumption that the set M exists that generates the paradox. If we
make this assumption for reductio, we obtain an indirect diagonal
argument,

Again, there are good analogues of this bad diagonal argument.
Consider, for example, the argument from recursion theory which
establishes the recursive unsolvability of the halting problem. A basic
theorem on recursively enumerable sets states; 4 is r.e. iff 4 is the
domain of a partial recursive function. Let W, = domain ¢,, where x
is a Godel number for the r.e. set W,. Let K = {x{¢_ (x) convergent} =
{x|xe W.}.So K = {x|x ¢ W.}. One way of expressing the recursive
unsolvability of the halting problem is to say that K is not recursive.
This we can prove by showing that K is not r.e., since K is r.e., and,
in general, A4 is recursive iff 4 and A are both r.e. The proof that K is
not r.e. is a diagonal argument. The side D, and the top D, are a sct
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of Godel numbers of all r.e. sets. The array R is given by

f, 1if y is a member of the r.e. set with

Godel no. x
R{x, y) = . i
0, 1f yis not a member of the r.e. set

with Godel no. x.
The diagonal F is identity. The countervalue H of Fis given by

1, if x is not a member of the r.e. set

with Gddel no. x
H(x,x) =
0, if xis a member of the r.e. set with

Gaodel no. x.

By the diagonal theorem, H cannot occur as a row. So the set K =
{x|x ¢ W,} is not r.e. Clearly, this diagonal argument is analogous to
that associated with the Russell paradox. But here the direct diagonal
argument is good. Unlike M, the set K exists.'®

A bad diagonal argument may take the form of an indirect argu-
ment. We can generate Cantor’s paradox as follows. Let the top D,
be the set of all sets, and let the side D, be the power set of D,. The
~array R is

I ifyex

R s e
0. 7) {0 ify ¢ x.

We suppose towards a contradiction that there is a diagonal F on D
and D,. We can now define a cértain member of D, in terms of F: the
- set of those elements of D, that do not belong to the subset of D,
with which they are correlated by F. But by the diagonal theorem,
there is no such subset in D,. We have a contradiction, and so there
is no diagonal F. And now we have a paradox: D, is neither smaller
nor equal in size to D,, yet D, is the set of all sets. This argument is
bad because it assumes the existence of a universal set. It is readily
converted to a proof that there is no universal set, And there is a
good analogue of this bad diagonal argument: let the top be any set,
and we obtain the indirect diagonal argument that establishes
Cantor’s power set theorem, '
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Finally, let us turn to a bad diagonal argument related to the Liar.
We introduce into English the 1-place predicate ‘heterological’, denot-
ing the property of being a predicate that does not have the property
it denotes. (So, for example, the predicates ‘French’, ‘monosyllabic’,
and ‘ambiguous’ are heterological.) Now let the side and the top be
the set of 1-place predicates of English, where the side and top are
taken to include the predicate ‘heterological’. The array R 1s given by

1, if y has the property denoted by x

R(x.y) = 40, if y does not have the property denoted
by x.

The diagonal F on R is identity. The countervalue H of Fis given by

1, if x does not have the property denoted
Hix,x) = ¥~
0, if x does have the property denoted by x.

By the diagonal theorem, there is no predicate of English that denotes
the property had by exactly those predicates of English that do not
have the property they denote; and yet ‘heterological’ is just such a
predicate. We are landed in paradox.

The conversion of this bad diagonal argument to an indirect
diagonal argument constitutes an attempt to solve the paradox. We
might take the assumption for reductio to be the assumption that
there is a ‘bivalent’ array, that the concept of heterologicality is every-
where applicable — allowing truth value gaps is one approach along
these lines. An alternative response is to say that though there is such
a concept, there is no predicate of the language that expresses it —
we assume towards a contradiction that the top and side include a
predicate expressing this concept. Both these responses will be dis-
cussed below, |

There are good direct analogues of this bad diagonal argument. As
Tarski remarks,” there is a close analogy between the heterological
paradox and Tarski’s theorem about truth. We capture Tarski’s
theorem as follows. Let S be a usual first-order theory with identity
which is based on Peano’s postulates and is adequate for the proofs
of all the basic results of number theory. The side D, is the set of
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1-place wifs of S, and D, is the set of natural numbers. The array R is
given by

1 if x is true (in the standard model) of y

R(x,y) = o
0 if x is not true of y.

The diagonal F carries each wif in D, to its Gidel number. The
countervalue H of Fis

1 if x is not true of its Goédel number y
H(x, y) = . L
0 if x is true of its Godel number y.

By the diagonal theorem, no wil of S is true of exactly the Godel
numbers of wifs not true of their own Godel numbers. But there is
such a wif of S on the assumption that the set of Godel numbers of
wifs of S that are true in the standard model is arithmetical. We con-
clude that this set is not arithmetical. The diagonal argument here
closely resembles that of the heterological case. But the set of wifs of
S not true of their own Gédel numbers exists; and so too does a wif
with this set as its extension, in a suitable metalanguage. There is
nothing problematic about the set or the wif; this is in contrast with
the predicate ‘heterological’ and the concept of heterologicality.

To sum up, bad diagonal arguments specify a top, a side, an array,
and a diagonal, in set-theoretical terms. As with indirect diagonal
arguments, the specification of this set-theoretical apparatus involves
somewhere the assumption of a non-existent set. And so, like indirect
diagonal arguments, bad diagonal arguments generate a contradic- -
tion, via valid reasoning that incorporates the proof of the diagonal
theorem. Unlike indirect diagonal arguments, this contradiction is not
part of a proof by reductio. The conversion of a bad diagonal argu-
ment to a good indirect one may be a straightforward matter. But not
always; as we will now see, the lesson of the Liar is not obvious.

V. THE DIAGONAL ARGUMENT AND THE LIAR

Tarski writes:

A characteristic feature of colloquial language (in contrast to various scientific languages)
is its universality. It would not be in the spirit of this language if in some other language
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a word occurred which could not be translated into it; it could be claimed that ‘if we
can speak meaningfully about anything at all, we can also speak about it in colloquial
language’ !

In particular, says Tarski, natural language

is semantically universal in the following sense. Together with the linguistic objects,
such as sentences and terms, names of these objects are also included in the language
.. . ; in addition, the language contains terms such as “truth”, “name”, “designation”,
which directly or indirectly refer to the relationship between linguistic objects and what
is expressed by them.

In what follows I shall be concerned with universality and semantic
universality in Tarski’s sense.?

Some truth-value gap theorists are motivated by the intuition that
natural languages are universal. According to R. L. Martin, gap solu-
tions of the kind he endorses “retain the intuitive view of language as
universal and give up intuitions about what we thought there was to
be said”.’ Faced with the heterological paradox, we may be pulled in
two different directions. We might be drawn to a gap approach like
Martin’s. According to such a view, sentences like ““Heterological’ is
heterological” are without truth value, and the associated paradox-
producing reasoning is blocked. On the other hand, we might convert
the heterological paradox into a proof that heterologicality is an
inexpressible concept, since the assumption that there is a term which
expresses this concept leads to contradiction. According to this alterna-
tive view, natural language is not universal, but expressively incomplete.

But now Martin claims that if we allow truth-value gaps, we may
deny that there is any such concept of heterologicality fo be
expressed. The gap at the level of language is matched by a gap at the
level of ontology. Martin speaks of another gap, between the situ-
ations before and after analysis: before analysis we thought there was
more to be said than what analysis reveals there is to be said. There is
only a restricted concept of heterologicality to be expressed. We might
think of it as a Fregean concept which yields neither truth nor falsity
as values for certain arguments.

If we accept Martin’s argument thus far, hopes of universality are
not yet dashed. However, given truth-value gaps, we can legitimately
form the concept is an expression which is false or neither true nor
Jalse of itself (or superheterologicality, for short). The assumption that
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this concept is expressible leads to a contradiction. For suppose that
the term ‘superheterological’ denotes this concept. Then, whether we
assume ‘superheterological’ is true of itself, false or itself, or neither
true nor false of itself, we obtain a contradiction. Adopting gaps and
assuming universality leads to contradiction: the gaps allow the con-
struction of concepts which, if assumed to be expressible, generate
paradoxes. And these new paradoxes arise out of the appeal to gaps,
and must be resofved in some other way. So the point is not just that
an appeal to truth-gaps fails to preserve intuitions about universality.
The truth-value gap theorist fails also to provide a general, ynified
account of semantical paradox. :

This is a criticism that can be made of Kripke's truth-gap approach
to the Liar.™ By a fixed point construction, Kripke obtains a
language %, which expresses its own concept of truth; that is, there
is a formula of %, which is trie of exactly the codes of true sentences
of Z,. However, it can be shown that the complement of truth
is not expressible in %_." The argument that vields this result
is a diagonal argument. Let the side D, be the set of 1-place wfis of
#4 and let the top D, be the set of natural numbers. The array R is
given by -

I, ifxistrue of y

R(x.») = <0, ifxis not true, i.e. is false or undefined,
of y.

The diagonal Fis a 1-1 function which carries each wif in D, 1o iis
code. The countervalue H of F is given by

1, if x is not true (is false or undefined)
H(x, y) = of its code y

0, if x is true of its code y.

The diagonal theorem tells us that no wif of %, is true of exactly the
codes of those wifs false or undefined of their own codes. This is an
exact analogue of Tarski’s theorem, with ‘not true’ now understood
as ‘false or undefined’, since we are admitting truth gaps. Just as
Tarski’s good diagonal argument is associated with the heterological
paradox, so our good diagonal argument is associated with the
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superheterologicat paradox. Both arguments establish that the respective
object tanguages are not semantically universal.

Our theorem indicates that Kripke’s truth-value gap approach
cannot dispense with a Tarskian hierarchy.”® The theorem forces the
first step up such a hierarchy, to a metalanguage for .%,, in which we
can talk about the complement of truth.”” We are forced up the
hierarchy in order to avoid semantical paradoxes with which truth
gaps cannot deal. And this shows that Kripke’s gap theory does not
provide a general solution to the Liar: ultimately, it is a Tarskian
hierarchy of languages that allows us to escape semantical paradox.”

I think Kripke must (and in fact does) accept this objection. And [
think Kripke would respond by arguing that the limitations forced on
his theory do not diminish its significance. According to Kripke,
though the minimal fixed point does not model a universal language,
it is a model of a significant stage of development of natural language;
it is a model of “natural language at a stage before we reflect on the
generation process associated with the concept of truth, the stage
which continues in the daily life of nonphilosophical speakers”.”
Kripke is claiming that, for this stage of natural language, his theory
provides an adequate account of truth.*

Let us return to the proof of our theorem. Informally, we construct
the sentence ““Is not true of itself” is not true of itself”, and go on to
derive a contradiction; the theorem requires only the notions of truth
and negation. The relevant notion of negation here is exclusion nega-
tion. If we interpret “—1” as exclusion negation, 714 is true iff 4 is
false or undefined, and — A is false iff A4 is true. Exclusion negation is
contrasted with choice negation. If *“1” is interpreted as choice nega-
tion, 714 is true iff A is false, 714 is false iff 4 is true, and 1 A4 is
undefined iff A4 is undefined. Now, Kripke’s construction of the mini-
mal fixed point uses choice negation: our theorem shows that the con-
struction cannot be carried out if negation is taken to be exclusion
negation. So Kripke relegates exclusion negation to a metalanguage.”
Others too have sought to defend truth-value gap approaches this
way. Terence Parsons writes:

When we “exclude exclusion negation™ from our language we are not in fact excluding
anything at all. For there is no such thing as exciusion negation in any formal langnage
which accurately reflects our own native speech.®
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This claim seems to me wrong as a matter of empirical fact.* But I
think that this focus on negation is misguided anyway. It is not nega-
tion that is the real source of the gap theorist’s troubles. Let us con-
struct the superheterological paradox according to our analysis of the
diagonal argument. The side D, and the top D, are the 1-place predi-
cates of English, the array R is given by

o~

, if x is true of y
R(x,p) = < f, ifxisfalse of y

u, if x is neither true nor false of y,

and the diagonal F is identity. There are 2 ways of forming a counter-
value (recall the remark on p. 282). And just one of these counter-
values, call it Hy, is associated with exclusion negation:

1, if x'is true of x
Hy(x,x) = <1, if xisfalse of x
¢, if x 1s neither true nor false of x.

This countervalue builds the concept faise of itself or neither true nor
Jalse of itself, which can be alternatively expressed as not true of itself,
where ‘not’ is exclusion negation. But exclusion negation is not required
to express this concept: we have just constructed it from the notions of
Jalse and neither true nor false. And the concepts associated with the
other countervalues are each expressible in terms of the notions of frue,
false and neither true nor false® It is, in general, a mistake to see the
emergence of paradox as having anything essentially to do with exclu-
sion negation: what is essential, rather, is the construction of a counter-
value,

In the present case, each countervalue is constructed from notions
which are to be found in ‘nonphilosophical’ language. In particular, the
notion of a sentence being neither true nor false surely is in the reper-
toire of the ordinary speaker. This notion is composed of the everyday
notions of truth and falsity, and the ‘neither-nor’ construction. And the
notion has clear, intuitive application — to meaningless or nonsensical
sentences, for example. Indeed, gap theorists themselves motivate truth
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gaps by appeal to our semantic intuitions, in ways independent of
semantical paradox. For example, Martin appeals to category con-
siderations, while van Fraassen starts out from the Frege-Strawson
theory of presupposition. Kripke himself is motivated by Strawson’s
doctrine. Of course, defending the introduction of truth gaps in these
ways will involve some semantic reflection on language. But such reflec-
tion is couched in quite ordinary language; to use Kripkean terminol-
ogy, it is expressed in language at a stage prior to reflection on the
generation process associated with the concept of truth. Such intuitive
motivation does not involve philosophical reflection on the Liar.

These are points missed by those who would defend truth-value gap
theories by excluding exclusion negation. Parsons argues that though
the non-creative definition

y =4 the function which maps ¢ to fand both f and
utof

defines a function, the existence of exclusion negation is not thereby
guaranteed. For, according to Parsons, it must also be the case that

. “the truth-function in question can be assigned as the denotation of a
unary coanective that consistently forms falsehoods from truths and
truths from sentences that are either false or neuter”.*® But even if
there is no such unary connective in ordinary English, there are other
means available within ordinary English for the construction of the
associated countervalue, and other countervalues too. Each of these
countervalues is associated with a version of the Liar which may be
expressed in ordinary language, but may not be resolved by an appeal
to truth-gaps.’

Let me recapitulate my objection to Kripke’s theory. There are two
stages. First, our diagonal theorem demonstrates the need to ascend
to a metalanguage: hence, Kripke's truth gap approach is not a full
solution to semantical paradox. Second, Kripke cannot retreat to the
claim that his approach provides a solution to the Liar for a certain
significant stage of natural language:; diagonal arguments show that
this stage of natural language has the resources to formulate para-
doxes which Kripke’s theory cannot resolve. _

This two-part objection to Kripke’s theory may be gencralized. In
iis general form, it presents a challenge to any purportedly non-Tarskion
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approach to the Liar, not just those, like Kripke’s, which appeal to
truth-gaps. We can express the challenge in the form of two questions.
First, does the theory give rise to semantical concepts which can be
expressed only in a metalanguage, on pain of paradox? If the answer
to this question is affirmative, then the scope of the proposed non-
Tarskian theory is limited. And an affirmative answer to the first
question prompts this second question: Are these semantical concepts
available to the ordinary speaker, independently of philosophical
reflection on the Liar? If the answer to this second question is also
yes, then not only 1s the scope of the proposed solution put into
question, but so is its significance. For, to repeat what was said at the
outset, the Liar is a product of our ordinary semantical concepts,
expressed by our ordinary semantical terms. A proposed solution that
fails to give an account of our semantical concepts fails to come to
grips with the Liar.

Gupta and Herzberger offer similar medifications of Kripke’s
theory which admits the classical valuation scheme: the ‘anti-exten-
sion’ of the truth predicate complements its extension.”” But now a
key notion of their theories, the notion of stable truth, is a notion of
the metalanguage, as an indirect diagonal argument will establish.*
So the answer to the first question is affirmative.

Gupta and Herzberger suggest that the stable sentences of the
formal object language L capture our intuitive notion of semantically
unproblematic sentences.” But now the paradox of stable truths may
be expressed in intuitive terms. We can form the concept associated
with the relevant countervalue, the concept does not yield a semanti-
cally unproblematic truth when appended to its own quotation. Paradox
issues in the usual diagonal fashion. This is a version of the Liar
expressible in ordinary terms, but beyond the reach of Herzberger and
Gupta’s theory, as presented. The answer to our second question is
also affirmative.

Gupta suggests, without elaboration, that we may add the predicate
‘stably true in L’ to the language L. Now

the paradox is present for the concept “stably true in L. But we must ask how is the
concept “stably true in L7 added to L? It must be added, it would appear, by a rule of
revision. But then can we not give an account of the new paradox parallel to that we
gave of the old?¥
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Now the following sentence is a sentence of (L):
(S (S) is not stably true in L.

Since (S) 1s paradoxical, (S) is not a stable truth of (L). That is, we
may assert:

(SY (8) is not stably true in L.

So, while (5) is paradoxical, (S)" is a true assertion. To account for
this, we need to distinguish two stable truth predicates, one internal
to L, and one external to L. The internal stable truth predicate is in
the object language, and expresses the concept for which the paradox
is present. The second is in a metalanguage for L, and (§) is never in
its extension. The need for the essentially richer language may be
demonstrated by a good diagonal argument.

We might yet follow Gupta’s general hine by enriching the object
language with this external stable truth predicate, expressing a further
concept added by a rule of revision. But still this enriched object
language will not express its external notion of truth. There is no end
to this series of increasingly rich object languages. No language in the
series will express its external notion of stable truth: a good diagonal
argument guarantees this. This series of languages is quite analogous
to a Tarskian hierarchy in which each language includes its predecessor
as a proper part.*

Rescher and Brandom present an altogether different kind of solu-
tion to the Liar.** According to their view, Liar sentences are both
true and false. Theirs, then, is an inconsistency view, a view which has
received increasing support in recent years. However, by their own
admission, although their theory can handle the Liar sentence “This
sentence is false”, it canrnor handle the Liar sentence “This sentence is
not true™.® According to Rescher and Brandom, we must separate
the inconsistent object theory from our consistent discourse about it.*
But this suggests a way out of the Liar which is ultimately along
Tarskian lines.* And the inconsistency approach itself leaves untreated
perfectly ordinary versions of the Liar. For this inconsistency approach,
we have an affirmative answer to both our questions.*

The approaches to the Liar that I have considered in this section
have failed in the same general way. In each case, a good diagonal
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argument demonstrates that the object language is not semantically
universal. Perhaps, then, this is just the lesson that the Liar teaches:
there are (semantical) concepts which natural language cannot
express.”’” For the assumption that a certain semantical concept can be
expressed by a term of (say) English leads to a contradiction, asso-
ciated with some version of the Liar.

Such a line is taken by Herzberger.” Herzberger’s inexpressibility
claims take the following form: a concept is inexpressible in some
conceptual system if the semantic rules assign its extension to no term
of that system.” For example, Herzberger argues that the set of
heterological terms of English is the extension of no term of English;™
and that no term of English has as its extension the set of grounded
terms of English.”* In each case, Herzberger assumes for reductio that
there is a term of English with the given set as extension, and obtains
a contradiction associated with semantical paradox.

I shall now argue that we should reject these inexpressibility
claims.” Consider an extensional version of the heterological array on
p. 288. If we follow Herzberger’s line, we have no Liar-related
reason to suppose that we are unable to fill in all the values of the
array. Notice that though the English expression ‘heterological’ (or,
‘is not true of itself’}) is in the side and top, there is no particular
problem about its extension, since, according to Herzberger’s claim,
whatever its extension is, it is not such as to produce semantic para-
dox. So it is a consequence of Herzberger’s claim that the array can
be completed. Now we can produce a countervalue in the usual way.
And assoctated with this countervalue is a certain set (the set of
heterological terms of English, we might be tempted to say, but of
course these italicized words won’t do the job). Our analysis pro-
vides a precise way of specifying the countervalue, given the fully
determinate array, and so a precise way of specifying the associated
set of English predicates.

But since our analysis may be expressed in English, the set asso-
ciated with the countervalue may be specified in English. To deny this
is to deny that we can talk about what we clearly can talk about: we
surely can talk about the array, and the various functions and sets
associated with 1t. The countervalue is a determinate set of ordered
triples, and the associated set of predicates of English is a determinate
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set of English predicates definable in terms of the countervalue. And
we can talk about all this in English — indeed, that is just what we
are doing. Herzberger’s inexpressibility claim has itself provided con-
ditions that allow the specification of the countervalue and the asso-
ciated set, in English. But if can specify this set in English, then the
set is the extension of a predicate of English.

Let *Her’ stand for this predicate. Is Her a member of the top and
side of our array? If it isn’t, then neither the side nor the top is the
set of all 1-place English predicates, contra Herzberger’s assumption.
Pursuing this line, one might conclude that a natural language like
English is indefinitely extendible, continually expanding to cover more
concepts. But this is not the thesis that Herzberger is proposing.

Suppose, then, that Het is a member of the top and side. Now, of
course, we are landed in contradiction. In assuming that Her is a
member of the top and side, we assume that we can fill in the values
of its row and column; that is, we assume it has a definite extension.
But supposing that we can fill in the value for the cell (Her, Her>
leads to a contradiction. Herzberger does not prevent the formation
of an array associated with a bad diagonal argument. The thesis of
expressive incompleteness does not escape paradox.” It will do no
good to conclude that the set associated with the countervalue is the
extension of no predicate of English, not even Her, for the argument
is re-iterable. And if we say there is no such set, then we have given
up Herzberger’s thesis of expressive incompleteness.

Good diagonal arguments have shown that certain purportedly non-
Tarskian theories of truth ultimately cannot dispense with a Tarskian
hierarchy. This limits the scope of the theories. Further, since these
diagonal arguments utilize ordinary semantical concepts, the signifi-
cance of the theories, qua solutions to the Liar, is questionable. We
can extract here a simple criterion of adequacy for a solution to the
Liar: the formal theory must represent our semantical terms and con-
cepts. I have argued that the theories discussed in the course of this
paper fail to meet this criterion.>

We may identify another related criterion. A solution to the Liar
must do justice to the expressive capacity of natural language.
Tarski’s intuition that natural languages are universal is not easily
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dismissed. We.should beware of claims that natural language is not
semantically universal, that certain semantical concepts are inexpressible.
As we have seen, at least one claim of this sort gives rise only to bad
diagonal arguments and paradox. %

NOTES

' Georg Cantor, “Uber eine elementare Frage der Mannigfaltigkeitslehre™, first pub-
lished in Jahresbericht der Deutschen Mathematiker-Vereinigung | (1890-91), pp. 75-78,
and reprinted in Gesanynelte Abhandlungen mathematischen und Philosophischen Inhalts,
ed. E. Zermelo, Berlin: J. Springer 1932, pp. 278-281. All page references are to the
latter collection,

* A ‘simply infinite’ sequence is a denumerable sequence, one that can be put into 1-1
carrespondence with the natural numbers.

* Cantor 189L, p. 278. I follow the translation in J. W. Dauben, Georg Canior,
Harvard University Press 1979, p. 165.

“ Cantor, op. cit., p. 279.

* Strictly, this is to claim too much. To show that M is of greater power than L, it
must be shown that there is no 1-} function from L into M ; and for this the Shroder-
Bernstein theorem is needed. No proof of this existed in 1891 when Cantor wrote his
paper.
¢ Cantor’s second proof is easily converted into a proof that the linear continuum is
less in power than the set of all it subsets, and a straightforward extension of this
latter proof establishes Cantor’s general theorem.

7 This definition is easily extended to proper classes.

8 There is another way in which we generalize the notion of a diagonal: we extend it
to nondenumerable arrays. For an array in which one or both of the side and top are
finite, there is a clear sense to the intuitive notion of the diagonal. For an array in
which the side and top are either finite or denumerably infinite, sense still attaches to
the notion of the diagonal, though it is now understood as infinitely extendible. But
where either side or top ts nondenumerable, as in Cantor’s second proof, the intujtive
notion of the diagoral breaks down. _
* According to this definition, a diagonal passes through every row, but not necessarily
every column. One kind of diagonal passes through every row and every column: in his
proofs, Cantor uses this kind of diagonal.

" Tt is usuaily J. F. Thomson who gets the credit for pointing out the connection
between this theorem, various paradoxes and the diagonal argument, in his paper, “On
Some Paradoxes”, in R. J. Butler {ed.), Analytical Philosophy, Oxford 1962, But Russell
had, in effect, made the connection; see The Principles of Mathemaiics, pp. 366-368,
esp. Section 347. Herzberger uses (Ru) and variants to analyze a family of diagonal
arguments, in “Paradoxes of Grounding in Semantics”, Journal of Philosophy 1970,
This theorem is also discussed in R. L. Martin, ““On a Puzzling Classical Validity™,
Philosephical Review 1977, and in Leonard Goddard and Mark Johnston, “The Nature
of Reflexive Paradoxes: Part 1, Notre Dame Journal of Formal Logic, 1983.

"' The proof is largely in the style of Kalish, Montague and Mar, Technigues of Formal
Reasoning, Second Edition, Harcourt Brace Jovanovich, 1980,
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12 Direct and indirect diagonal arguments are the two kinds of diagonal arguments that

establish theorems (these are the ‘good’ diagonal arguments). In the next section we

shall also characterize *bad’ diagonal arguments, which are neither direct nor indirect

diagonal arguments.

Y Russell, op. cit., p. 366.

¥ op. cit., p. 368.

15 See Jules Richard, “Les principes des mathématiques ¢t le probléme des ensembles™,

in Revue générale des sciences pures et appliquées, 1905. Richard’s paper is translated in

Jean van Heijenoort (ed.), From Frege to Gédel, Harvard University Press 1967,

pp- 143-144,

6 Richard (op. cir.) not only presents his paradox, but goes on to offer a solution. In a

paper in preparation, I argue that the most plausible reading of Richard’s brief com-

ments do not block the re-emergence of the paradox.

" Van Heijenoort, op. cit., p. 143 _

18 Of course, an adequate solution to Richard’s paradox would provide an account of

the notion of definability that would explain why there is no such set.

¥ By the definition of K, we have that W,CK — x e K — W,. This property of K is

given a recursively invariant formulation in the definition of a productive set. Pro-

ductiveness is closely linked to diagonalization: theorems concerning productive sets

provide further examples of diagonal arguments. '
Other basic theorems of recursion theory would have served our illustrative purposes

just as well; for example, the proof that the class of primitive recursive functions does

not include all algorithmic functions, or Kleene’s result that there is no algorithm

which yields just the total functions.

2 See Tarski’s “The Concept of Truth in Formalized Languages”, in Logic, Semantics,

Metamathematics, Oxford 1956, p. 248, fn. 2.

' Tarski, op. cit., p. 164,

2 1t is worth pointing out that Tarski is not claiming that all concepts are expressibie

in, say, English. Such a claim would be trivially false. Rather, Tarski is saying that if a

concept is expressible in some language, then it is expressible in English. And the

narrower claim that English is semantically universal is the claim that English has the

means to express its semantic concepts, such as the concepts of truth, falsity, and refer-

ence. Below, 1 shall add to this list the semantic concepts neither true nor false and

semantically unproblematic sentence.

B R. L. Martin, “Are Natural Languages Universal?”, Synthese 1976, p. 288.

* Saul Kripke, “Outline of a Theory of Truth”, Journal of Philosophy 1975, reprinted

in R. L. Martin {ed.), Truth and the Liar Paradox, Oxford 1984, All page references are

to the Martin anthology.

¥ Elsewhere, | have presented Kripke's theory, and the result just mentioned, in a

fully rigorous way, using Moschovakis’s notion of an acceptable structure.

% Kripke is aware of the necessity to ascend to a hierarchy, but perhaps understales

the problem when he writes: “The ghost of the Tarski hierarchy is still with us™

(op. cit., p. 80).

T One such metalanguage (call it M) is the language of Kripke’s paper. According to

Kripke, M can be regarded as containing no truth gaps, since a sentence either does or

does not have a truth value in a given fixed point. But now Tarski’s theorem applies to

M: “true-in-M" is not contained in M, but in some further metalanguage. And so a

Tarskian hierarchy is generated. Alternatively, one could add to M a predicate 77, and
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by Kripke’s construction obtain a fixed point interpretation of M + T, so that 7" is
the truth predicate of M + T, Then we wilf need a further metalanguage to express
the complement of 7° — and again, a Tarskian hierarchy is generated.

* Tyler Burge, in “Semantical Paradox”, Journal of Philosophy 1979, also objects to
Kripke’s theory along these fines,

¥ Op. cir., fn. 34, p. 80.

% Perhaps we should be suspicious of this talk of a certain stage of natural language;
see Tyler Burge, ‘Semantical Paradox’, Journal of Philosophy, 1979, p. 88, fn. 9. But I
shall not pursue such worries in this paper. '

' Op. cit., p. 80, and fn. 35.

* Terence Parsons, “Assertion, Denial, and the Liar Paradox”, Journal of Philosphical
Logic 1984, p. 149,

* The notion of a meaningless sentence (in its ordinary, non-technical sense) surely is
in the repertoire of nonphilosophical speakers, and it is natural enough to infer ‘A is
not true’ from '4 is meaningless’. And here is a use of ‘not” which is most plausibly
analyzed as exclusion negation, Further, if we accept that ordinary speakers have avail-
able to them the notion of a sentence being neither true nor false, then the jnference
from ‘A is neither true nor false’ to ‘4 is not true’ is an intuitive one, and a use of
exclusion negation appears in the conclusion.

** For example, the concept corresponding to the countervalue

u if xis true of x
H{x,x) = ¢ if xis false of x

S if x is undefined of x

is expressed by undefined of those expressions true of themselves, true of those expressions
Sfalse of themselves, and false of those expressions undefined of themselves.

** Parsons, op. cit., p. 150,

% The limitations of truth-value gap approaches to the Liar might suggest that we
haven’t gone far enough, that we should make a more radical break with classical logic
and semantics, Here, fuzzy logic might seem a natyral candidate, The term ‘fuzzy logic’
Is sometimes applied to systems which admit non-denumerably many truth-values. Bya
generalization of Lukasiewicz’s 3-valued logic, these truth values may be identified with
the real numbers in the interval {0, 1. And other approaches are possible. According to
Zadeh, the extended Lukasiewicz system is a nonfuzzy multi-valued system, and should
be regarded only as a basis for a fuzzy logic. Zadeh starts with the nen-denumerable
set of truth values and from it constructs truth values that are themselves fuzzy (see
Zadeh’s “Fuzzy Logic and Approximate Reasoning”, Synthese, 1975).

But on any ‘fuzzy’ approach, we obtain a ‘fuzzy’ analogue of the array associated
with the superheterological paradox. Associated with this array are infinitely many
countervalues. These generate infinitely many inexpressible concepts, and infinitely
many versions of the Liar that fuzzy logic cannot accommodate. Clearly, we are no
better off, : '

3 Hans Herzberger, “Notes on Naijve Semantics”, and Anil Gupta, “Truth and paradox”,
both in Journal of Philosophical Logic 1982; and both reprinted in R. L. Martin, 1984.
In what follows, I assume familiarity with these theories.’
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* Gupta is quite explicit about this: “We have used it [the notion of ‘stable truth’] in
the metalanguage to give an account of the concept of truth in the object language L™
(ep. cit., p. 233). )

¥ See, for example, Gupta’s comments on p. 225: . . . it is reasonable 1o believe that
[the stable sentences} include all the unproblematic sentences”, and “[t]he problematic
sentences — such as the Liar and the truth teller (“This very sentence is true””) — are,
by our account, unstable™.

® Gupta, op. cil., p. 233. This is all Gupta says on the matter.

' And there are analogous difficulties. Many have found Tarskian accounts of ‘true’
artificial because the truth predicate is split into infinitely many distinct predicates; as
Kripke puts the point: “Surely our language contains just one word ‘true’, not a
sequence of distinct phrases true,”, applying to sentences of higher and higher levels”
(Kripke, op. cit. p. 58). There is an analogous problem for Gupta’s extended theory: we
can argue that in natural language there is just one predicate ‘semantically unproble-
matic truth’, and it is artificial to split it into infinitely many distinct predicates, each
defined with respect to a distinct language. Further, how are we to connect these dis-
tinct predicates to ordinary uses of ‘semantically unproblematic truth’? Which of these
predicates is appropriate for the interpretation of, say, “No sentence is both a semanti-
cally unproblematic truth and a semantically unproblematic falsehood’™? _

2 Nicholas Rescher and Robert Brandom, The Logic of Inconsistency, APQ Library of
Philosophy, 1979.

“ See The Logic of Inconsistency, pp. 34-35.

# See The Logic of Inconsistency, Section 26 and p. 4.

* It would seem that a genuine inconsistency solution to the Liar must dispense with
the object language/metalanguage distinction altogether. Graham Priest’s “paracon-
sistent” approach claims to do just this. This, I would argue, leads to new difficulties;
but for reasons of space I shall not pursue this matter here.

% For reasons of space, I have not considered Feferman’s classical medification of
Kripke’s theory (Solomoen Feferman, “Towards Useful Type-Free Theories, 1™, Journal
af Symbolic Logic, 1982, and in Martin 1984). As in Kripke’s theory, the complement
of truth is not expressible in the object language, and so the answer to the first of our
questions is affirmative. And since Feferman’s account does not prevent the formation
of the counterdiagonal concepts, any more than Kripke’s does, the answer to our
second question is affirmative too. I cannot pursue the details here.

T Apart from Herzberger, discussed below, Donald Davidson also takes this view, in
“Truth and Meaning”, Synthese 1967.

** See Herzberger, “Paradoxes of Grounding in Semantics”, and “New Paradoxes for
Old™, Proceedings of the Aristotelian Society 1981,

* Herzberger writes: “Formally, an elementary conceptual system is a triple

{I, N, F} consisting of a denumerable set 7, its terminology; an abstract class N,

its ontology; and a function f whose value for each term in T is a subset of N.

A concept is expressible just in case the semantic rules f assign its extension to at

least one of the terms of the system™ (“Paradoxes of Grounding in Semantics”,

p. 157). This characterization of expressibility (and inexpressibility) carries over

to the variously enriched conceptual systems which Herzberger goes on to

develop.

0 See “New Paradoxes for Old”, pp. 113-114. As Herzberger points out, this negative
expressibility claim is “‘relative to a very simple view of concepts and the way they
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relate to words” (p. 113). Below, I shall argue that this claim cannot be made out, even
relative to this simple view,

*! See “Paradoxes of Grounding in Semantics”, p. 153, and pp. 159-160. Herzberger
defines a grounded term as a term that heads no infinite sequence of terms each of
which is satisfied by its successor in that sequence.

* R, L. Martin, in “‘Are Natural Languages Universal?”, has also argued against
Herzberger’s inexpressibility claim, though not along the lines I suggest below.

% The argument I have presented carries over in an obvious way to the case of grounded
terms, and to the other inexpressibility results Herzberger obtains in “New Paradoxes
for Old”,

* T would extend this criticism to Tarskian theories, though this is not the place to
develop the point. In a word, the stratification of, say, English into a hierarchy of
distinct languages seems artificial, an overly rationalized account of natural language.
* Elsewhere, | propose a solution to the Liar which, I arpue, satisfies both these
criteria (see my “On a medieval solution to the Liar paradox”, History and Philosophy
of Logic, Volume 8, 1987, Number 2, and “A Singularity Solution to the Liar”, in
preparation).
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