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ON AN ARGUMENT AGAINST OMNISCIENCE

In this paper, I examine a recent argument against omniscience. Patrick Grim has offered
an intriguing Cantorian argument for the claim that omniscience is impossible.! There are two
stages of the argument. The first stage of the argument purports to show that there is no set of
all truths. It goes like this:

There is no set of all truths.

For suppose there were a set T of all truths, and consider all subsets of T,
elements of the power set PT.

To each element of this power set will correspond a truth. To each set of the
power set, for example, a particular truth T, either will or will not belong as a member.
In either case we will have a truth: that T, is a member of that set, or that it is not.
There will then be at least as many truths as there are elements of the power set PT. But
by Cantor’s power set theorem the power set of any set will be larger than the original.

~There will then be more truths than there are members of T, and for any set of truths T
there will be some truth left out.

There can be no set of all truths.?

Now comes the second stage, which concludes that omniscience is impossible:

Were there an omniscient being, what that being would know would constitute a set of all
truths. But there can be no set of all truths, and so can be no omniscient being.?

I shall argue that neither stage of Grim’s argument succeeds.

1. The bearers of truth

Notice an assumption of the first stage of the argument: "To each element of the power set of T
there corresponds a truth". The justification for this assumption is that given any member of the

power set of T, there is a truth about that member (for example, that the truth T1 belongs to that

member, or that it doesn’t). Behind the assumption lies a more general one:

(A) To each set, there corresponds a truth,
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justified as a consequence of

(A") Given any set, there is a truth about that set.

And since sets are just one kind of object, we can generalize the assumption further, to
(B) To each object, there corresponds a truth,

justified as a consequence of

(B") Given any object, there is a truth about that object.

Should we accept (A) and (A’), and (B) and (B’)?

The question prompts another: what kind of entities are truths? Grim does not consider
the matter, so let us survey some principal candidates for the bearers of truth. On one standard
view, the truth-bearers are sentences; more precisely, sentence-types in a language.® Call a
language finite if it has a finite vocabulary and sentences composed of finitely long strings.
There may be denumerably many sentences in a finite language; still, there are at most
denumerably many truth-bearers. If the truths of this langﬁage form a set, this set is at most
denumerable. Consider the power set of the set of truth-bearers. By Cantor’s theorem, there are
more members of this set than there are truth-bearers, and so more members of this power set
than there are truths. Here, (A) (and so (A’), (B) and (B’)) are plainly false.

Perhaps, then, we should consider infinitary languages, languages with either an infinitely
large vocabulary, or with infinitely long strings, or both. (Here we are clearly moving beyond
natural languages.} Take such an infinitary language. As long as there is a cardinal number
which measures the size of the vocabulary, and ordinal numbers which measure the length of
strings, the sentences of such an infinitary language will form a set. By Cantor’s theorem, its

power set is larger. And since there are at most as many truths as truth-bearers, there will not be




a truth of the language for every member of the power set, and (A) (and so (A)) are false. If
instead we assume that the sentences of the infinitary language do not form a set, then indeed
there will be no set of truths of the language, but this is to assume the result that Grim is out to
establish.

What if we suppose that for every cardinal number, there is a language whose set of
sentences is of that cardinality? It might seem that under this assumption, (A) is true. Given the
set of truths of some language, its power set will outrun the sentences of the language. But there
will always be another Janguage which supplies as many truth bearers as there are members of
this power set.

Clearly this is a very strong assumption. And now we need no special argument about
truths to show that there is no set of all truths. Set-theoretical considerations alone suffice.
Simply take a truth from each language; then, by Burali-Forti’s theorem and the Axiom of
Replacement, there is no set of even these truths, since there is no set of all cardinals.

What is worse, the present assumption together with the assumption (A) generate a
paradox. According to (A), there is a truth for each set. It would be better not to take this as
saying that there is a truth-in-L for each set, for some language L. For if we suppose that (A) is
relativized to the language L, then (A) is false. There is not a truth-in-L for every set. Simply
consider the power set of the set of truth-in-L: there will not be a truth-in-L for every member of
this power set. Rather, we should understand (A) as:

(1) For any set, there’s a corresponding truth in some language.
And we also have this furthér assumption:

(2) There is a language of every cardinality.




Let us now ask: in what language is the first stage of Grim’s argument expressed? Call
this Ianguage L. (As Grim presents the argument, L appears to be English). In order to express
(1), L must have the resources to express the concept true in some language. In order to express
(2), L must have the resources to quantify over all cardinals. So, L has the resources to express
the concept is true in some language of some cardinality. But this concept generates a version of
the Liar paradox. We may construct in L a self-referential sentence which says of itself that it is
not true in any language of any cardinality. Assuming that L is a language of some cardinality, a
contradiction is forthcoming.

Taking L to be English, the Liar sentence is:

(X) This sentence is not true in any language of any cardinality.

Suppose (X) is a true sentence of English. Then (X) is not true in any language of any cardinali-
ty. On the assumption that English is a language of some cardinality, (X) is not a true sentence
of English. This is a contradiction. Now suppose (X) is not a true sentence of English, Given
that (X) is a sentence of English, it follows that (X) is not true in any language of any cardinali-
ty. So what (X) says is the case. So (X) is true; that is, (X) is a true sentence of English.
Either way, we obtain a contradiction.

Without a way out of the Liar, the assumption that there is a language of every cardinali-
ty will not help. Of course, it could be said that the language of the argument ‘stands above’ the
languages of each cardinality, and is not itself one of them. But this is to assume from the outset
a language whose truth-bearers do not form a set, and this begs the question.

Thus far we have assﬁmed that no sentence-type of a language is associated with more

than one truth: we have assumed that, if the truths do form a set, the cardinality of sentences is




greater than or equal to the cardinality of truths. We might resist this assumption for at least two
reasons: sentences may contain ambiguous expressions, and they may contain context-sensitive
expressions. But we can accommodate both ambiguity and context-sensitivity by taking the truth-
bearers to be disambiguated sentence-types in a context. Still there will be a set of all truth-
bearers, unless we assume further that there are terms ambiguous in as many ways as there are
sets, or that there is no set of all contexts. Either assumption would frivialize Grim’s argument,
With the indexical term ‘here’ in mind, we may be led to conclude that there are at least
as many truths as there are points in space; thinking of ‘now’, we may conclude that there are at
least as many truths as there points in time; and thinking of the combination ‘here now’, we
might conclude that there are at least as many truths as there are points in space-time, But
though we may be led to think that there are uncountably many truths, still this falls short of
establishing that there is a truth for every set. The familiar counterargument still works. The set
of truth-bearers will be a set of ordered pairs of disambiguated sentence types and contexts, and

the power set of this set will have more members than there are truths.

- II. Russellian propositions and paradoxes

The foregoing suggests that if truths are linguistic entities, (A) (and so (A"), (B) and (B")) are
false. And Grim’s presentation encourages the idea that truths gre linguistic items. Given a
subset of truths, and a truth T,, Grim says there.is a truth: that T, is a member of that subset, or
that it isn’t. It is natural to éuppose that the truth-bearer here is the English sentence "T, is a

member of that subset" or its negation. And in another presentation of the argument, Grim gives




the following as examples of such truths: "T, &€ @", "T, € {T,}", "T,& {T,}", ... .* The
construction of a distinct truth for each member of the power set appears to be a linguistic
enterprise: we construct appropriate true sentences.

Still, perhaps we can save (A) by breaking the connection between language and truth,
Perhaps the truth bearers are non-linguistic propositions. Many different accounts of propositions
have been offered, and many of these are perfectly compatible with there being a set of true
propositions.® But there is a view of propositions according to which, given any set, there is a
(true) proposition about that set. Consider Russell’s early view of propositions.” According to
this view, propositions are langunage-independent structured entities, and objects are constituents
of propositions. In correspondence with Frege, Russell insisted that Mont Blanc, "despite all its
snowfields",® is a part of the proposition expressed by "Mont Blanc is more than 4000 metres
high". Now it seems to follow that there cannot be more objects than propositions. Russell

argued the point this way:

... the number of propositions is just as great as that of all objects absolutely, since every
object is identical to itself, and ‘x is identical with x* has a one-one relation to x.°

To each object x, there corresponds a proposition about x expressed by ‘x is identical to x’.
Since each of these propositions is true, we obtain (B’), and so (B), (A’) and (A)."?

But Russell was painfully aware of a problem with the claim thé.t to each set there
corresponds a proposition: the claim is implicated in paradox.!' Given a set S, let us follow

Russell and call the proposition expressed by ‘Every member of S is true’ the Jogical product of

S, and each member of S a factor of this logical product. We just argued that there are just as

many propositions as sets. But it seems that there is also a Cantorian proof that there are not as

many propositions as sets. Assume, with Russell, the following one-one correlation: each




proposition that is not a logical product is associated with its unit set, the logical product of all
propos_itions is associated with the empty set, and every other logical product is associated with
the set of its factors. Russell continues:

Then the range [i.e. set] w which, by the general principle of Cantor’s proof, is not

correlated with any proposition, is the range of propositions which are logical products,

but are not factors of themselves.!?
For suppose, towards a contradiction, that there is a proposition correlated with w. Then this
correlated proposition is the logical product' of w. Is this logical product a factor of itself? If it
is, then it is a logical product that is not a factor of itself. If it is not, then it is a logical product
that is not a factor of itself, and so is a factor of itself. Either way, we obtain a contradiction.
So there is no proposition correlated with the set w, and we have a Cantorian proof that there are
more sets than propositions. In particular, there are more sets than true propositions. But this
contradicts (A). And we have a paradox,’®

We might already have suspected that (A) (and (A')) are associated with paradox. What
Grim presents as an argument to the conclusion that there is no set of all truths, others may
regard as a paradox - assume that there is a set of all truths, and assume that for every set there
corresponds a truth, and a contradiction is generated by a Cantorian argument. Those who find

these assumptions natural and intuitive will be unimpressed by Grim’s conversion of the paradox

to a reductio proof that there is no set of all truths - they will want independent motivation. But

the manoeuvre won’t work for Russell’s paradox about propositions anyway. This is a different
paradox: there is no assumption that there is a set of all truths. Russell shows us that (A) is still
more deeply involved in parédox.

Russell’s paradox about propositions is structurally similar to Cantor’s paradox about




sets. We can develop a second closely related paradox about propositions that is structurally
similar to Russell’s paradox about sets.’> Some propositions are about sets of propositions (for-
example, the proposition expressed by “The set of propositions expressed by Socrates contains
profundities’.) And a proposition may be a member of the set of propositions it is about (for an
example, suppose that Socrates uttered the last-quoted sentence). Consider the set m of proposi-
tions that do not belong to the set of propositions they are about. According to (A’), there is a
true proposition about m. But consider a true proposition that is about m. Is this proposition
itself a member of m? If it is, then the proposition does belong to the set that it is about, and so
is not a member of m. Suppose, on the other hand, that it is not a member of m. Then the
proposition does not belong to the set it is about, and so it is a member of m. Either way we get
a contradiction. We are landed in paradox. As with Russell’s paradox about propositions, the
assumption that there is a set of all true propositions is not implicated; but (A’) is.

There are many ways out of these paradoxes. We might deny that propositions can be
about sets that contain them, and thereby ban a form of self-reference and circularity. Or we
might deny that there there is a set of true logical products that do not belong to their own
ranges, or a set of propositions about sets of propositions to which they do not belong. Or we
might admit truth gaps, so that, for example, the sentences "w is a factor of itself" and its
negation are without truth value. It would take some further argument, beyond anything Grim
supplies, to show that these ways out are compatible with (A) and (A’), and incompatible with
there being a set of all true propositions.

And some ways out are clearly incompatible with (A) and (A’). We might simply

abandon Russellian propositions as truth-bearers, in favor of one of the candidated discussed in




the previous section, and thereby reject (A) directly, along with (A’). Or we might conclude that
there is an essential limitation on Russellian propositions: what the paradoxes show is that certain
sets cannot be constituents of these structured entities. When we generated Russell’s paradox
about propositions, we assumed, in accordance with (A), that there is a proposition correlated
with w, the set of logical products that are not factors of themselves. This correlated proposition
is the logical product of w, the proposition expressed by "Every member of w is true". But we
can deny that there can be propositions about w. Similarly, with regard to our second paradox,
we can deny that there can be propositions about the set m, the set of propositions that do not
belong to the set of propositions they are about. These are sets that cannot be constituents of
propositions. There are essential restrictions on what propositions can be about.'® In this way,
we give up (A’), and the justification for (A).

There is an analogue of this way out at the linguistic level. In response to semantical
paradox, some have proposed that there are certain sets that are the extension of no linguistic
expression: certain sets are beyond the reach of language, on pain of paradox. That is, natural
languages like English are essentially expressively incomplete.!” The thought is that the
paradoxical arguments are expressed in English, and paradox results from the attempt to express
what is inexpressible in English.

It is not my purpose here to assess these various ways out.* My point is that Grim’s
argument relies on {A) and (A'), and these claims are implicated in semantical paradox. So we
are owed a principled way out. And there is, I think, a general lesson here: we cannot establish

that there is no set of all trufhs independently of a solution to the Liar.



III. Omniscience without a set of all truths

Recall the crucial claim of the second stage of Grim’s argument: "Were there an omniscient
being, what that being would know would constitute a set of all truths.” Should we accept this
claim?

Cantor found it necessary to distinguish "two kinds of multiplicities":

For a multiplicity can be such that the assumption that all of its elements "are together"
leads to a contradiction, so that it is impossible to conceive of the multiplicity as a unity,
as "one finished thing". Such multiplicities I call absolutely infinite or inconsistent
multiplicities.

As we can readily see, the "totality of everything thinkable", for example, is such
a multiplicity... '

If on the other hand the totality of the elements of a multiplicity can be thought of
without contradiction as "being together”, so that they can be gathered together into "one
thing", T call it a consistent multiplicity or a "set".?

The multiplicity of all sets would, in Cantor’s terminology, be an inconsistent multiplicity:
all the sets cannot be thought of as a finished thing, they cannot be gathered together into one
thing. This is not to say that they do not all exist. But they do not form a set. Cantor’s notion

of multiplicity is a notion more comprehensive than that of set. All the sets form a kind of

multiplicity that is not a set. Now we might say the same thing about all the truths: they too
form a multiplicity that is not a set.

It is reasonable to ask how an inconsistent multiplicity could be given to us, if not as a
set, if not as a single thing, As Charles Parsons has suggested, a plausible answer is this: such
inconsistent multiplicities are given to us through predication.®® We can understand the predi-
cate ‘is a set’, and grasp the concept of a set, in such a way that it is not part of our understand-

ing that the sets together form a single object, or, more strongly, that it is part of our understand-
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ing that they do not together form a single object. Parsons goes on to remark: "We might
abstract from language and speak with Kant of knowledge through concepts ... "' It is some-
times said that Cantor’s inconsistent multiplicity is a precursor of the more recent notion of
proper class, a kind of collection "too big" to be a set. One way to put the present suggestion is
that we take proper classes to be at bottom intensions, rather than any kind of completed
collection,?

Consider now all the truths. How could God know all the truths if they do not form a set
(or any kind of completed totality)? On the present suggestion, God knows all the t_ruths through
the extensionless concept under which they fall. God could not grasp all the truths as a single
set; there is no such set for God to have knowledge of. We may suppose that God can survey
each and every thing that there is, and know whether or not it falls under the concept of truth.
The assumption that all the objects that fall under the concept of truth do not together form a
single set is no threat to their joint but several existence, or to God’s recognition that each falls
under the concept. In short, it is no threat to God’s omniscience.

It might be denied that there is a concept that applies to all and only the truths. This is
another way out of our paradoxes of propositions, where such a concept is assumed. As always,
we would need further argument to convince us to take this way rather than the others we have
mentioned. We would also need an account of how we are to understand (A}, (A’), (B) and (B'),
given that the concept of truth is a part of their meaning.

The rejection of a global concept of truth can be further articulated via the notion of a
hierarchy. Russell declared 'that "all propositions” is a "meaningless phrase"”, and proposed a

hierarchy of orders of propositions:
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We may define first-order propositions as those referring to no totality of propositions;
second-order propositions, as those referring to totalities of the first order; and so on ad
infinitum.
So the meaningless phrase “all propositions” is replaced by a series of meaningful phrases: "all
propositions of the first order”, "all propositions of the second order", and so on. The global
~ concept of true proposition is rejected in favor of a series of restricted concepts: true first-order
proposition, true second-order proposition, and so on.” In this way, then, the propositions
form a hierarchy, and any of these restricted concepts apply only to the propositions of a single
level of the hierarchy.

A related ingredient of the hierarchical approach is that there is no quantification over all
propositions. This too constitutes a response to our paradoxes, since both involve unrestricted
quantification over propositions. Again, further justification is called for; for one thing, it is not
easy to give up a basic principle like ‘All propositions are true or not true’. Notice that
justification is not provided by the denial that there is a set of all truths. Quantification over all
truths does not require a completed totality of truths. D. A, Martin has remarked:

I don’t see why one must believe in infinite sets to understand an assertion like

(vx)@AyXVvz)(3w)R(x,y,z,w) where R is, say, a molecular formula in the usual number

theory. The assertion - and the quantifiers -- do not directly mention any infinite totality.

1 do not see that the assertion presupposes the existence of any infinite totality. It

presupposes only certain finite objects, i.e. each of the natural numbers. Similarly, I do

not see how the intelligibility of any particular assertion in the language of formal set
theory depends upon the assertion of a completed totality, the class of all sets.”
We can say the same thing about quantification over all truths. We do not quantify over a set of
truths, only over the truths themselves.?

Independent motivation aside, the hierarchical response has difficulties of its own. On the

present proposal, the propositions do not form a set, but rather a hierarchy, just as in ZF set
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theory there is a hierarchy of all sets, but no set of all sets. One difficulty is that the hierarchy
of propositions itself might be regarded as a collection of all the propositions. Why don’t the
members of the hierarchy form a collection? Why not say that what an omniscient being knows
constitutes a hierarchy? The worry is that we’ve simply rejected one kind of collection (a set) in
favor of another. A second difficulty is this: anyone who appeal to a hierarchy cannot admit
truths about the hierarchy, for these will be truths involving all propositions. This is not easy to
accept. Given the hierarchy, there certainly seem to be truths about it (for example, that its first
level contains propositions not about propositions). Indeed, if there are no such truths, we may
ask how the hierarchical account is to be stated. Still, let’s accept there are no truths about the
hierarchy. Then we have an object about which there is no truth, and so (B’) is false, and we
lose the justification for (B).

Suppose that, despite these difficulties, we take the hierarchical way out. Suppose that
there is no set, or any completed totality, of propositions, and no quantification over all
propositions. What are the consequences for omniscience? I see no threat to omniscience. The
propositions are there, arranged in a hierarchy, and they fall under God’s purview. Of course,
the hierarchy is open-ended: at any level a, there are (true) propositions that have not yet
appeared at level o or any lower level. But take any true proposition. It belongs to some level
o. Constrained by our finiteness, we cannot run through even denumerably many levels,
However, God is presumably under no such constraint. God can run through the ordinals to o.
And however many propositions there are at that level, God can run through them too. Our
arbitrary true proposition is accessible to God.

To sum up: even if there is no set of all truths, this does not by itself establish the
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impossibility of omniscience. There are ways to reject a set of all truths and accept omniscience.
We might admit an extensionless concept of truth, and we might admit a hierarchy of proposi-
tions. In the absence of arguments to show that God cannot grasp the concept or survey the

hierarchy, the possibility of omniscience remains.
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2. "Logic and Limits of Knowledge and Truth", p. 356.
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sentence but at any rate a meaningful sentence in one language, may be a meaningless
expression in another (Alfred Tarski, "Truth and Proof", Scientific American, 1969, p.
86).
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different statements, For Barwise and Etchemendy, "propositions... are the claims made by
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we deny that there is a set of those events "where a speaker asserts or attempts to assert
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8. See Gottlob Frege, Philosophical and Mathematical Correspondence, edited by H. Hermes et
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9. The Principles of Mathematics, p. 526, section 498.

10. For Frege, the truth-bearers are thoughts, the senses of sentences. Thoughts do not belong
to the realm of reference, but to the realm of sense. Mont Blanc is not a constituent of the
thought expressed by "Mont Blanc is more than 4000 metres high"; for Frege, individuals from
the realm of reference could never be constituents of thoughts. What is a constituent of the
proposition is the sense of the name ‘Mont Blan¢’, Following Church, let us call the senses of
names individual concepts. For Frege, senses are objective and unchanging; they exist
independently of us, and of language. So how many senses there are is a matter independent of
us and of language.

Now, are there (at least) as many individual concepts as individuals? The answer to this
question is independent of limitations of language or thought. It is an ontological question about
the objects of the realm of reference and the realm of sense. Since I do not know how Frege
would characterize the relation between an individual and an individual concept independently of
language and thinkers, I am unsure how to answer the question. But here are two considerations
which may suggest that there are no more individuals than individual concepts. First, there are
individual concepts for non-existent individuals. And second, on the possible worlds approach,
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If indeed there are at least as many individual concepts as individuals, and if sets are
admitted as individuals, then there is no set of individual concepts, since there is no set of all
sets. And then, if there is a distinct true thought corresponding to each individual concept, then
there is no set of true thoughts: that is, no set of truths, on the Fregean view of truth-bearers.
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12. The Principles of Mathematics, p. 527.
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